发表时间:2022-03-25来源:网络
本人在写论文的时候,用到了很多工具,可用说这些工具可以大大提高写论文的效率,本文分享下我常用的论文神器。
(作者:黄海广)
论文管理神器Zotero
OCR神器(公式识别等)
Latex工具
语法校对工具
论文绘图工具
Zotero作为一款协助科研工作者收集、管理以及引用研究资源的免费软件,如今已被广泛使用。此篇使用说明主要分享引用研究资源功能,其中研究资源可以包括期刊、书籍等各类文献和网页、图片等。欢迎所有共同学习使用的朋友提供批评意见或补充使用经验。
下载地址:https://www.zotero.org/download/
ubuntu下安装zotero:
sudo apt-add-repository ppa:smathot/cogscinl # Say yes/press enter to accept any requests. $ sudo apt-get update # Wait for it to complete, then: $ sudo apt-get install zotero-standalone步骤:我的文库→右键→新建分类→输入名称→鼠标右键我的文库→出现新建文件夹

步骤(非常简单):
在新建目录下→鼠标拖入英文文献→右键重新抓取PDF文件的元数据→获取文献基本信息
备注:一些时间久远的英文论文也不能直接抓取数据,具体信息抓取方法参照第四部分中文文献的信息导入。



步骤(稍复杂):
1. 在Text目录下→鼠标拖入中文文献
2. 在百度学术搜索文献→点击批量引用→导出到BibTex→下载


3. 用记事本打开下载好的.bib文件→复制全部内容

4. Zotero界面文件一栏→选择从剪贴板导入

5. 将PDF文件鼠标拖至刚导入文件成为其子文件→完成中文文献的信息抓取

步骤:
1. Word中点击菜单栏中的“Zotero”工具栏→选择要引用的方式(默认选项没有的引用方式参见第六部分)


2. 鼠标光标置于要插入上角标处(即下图2处)→点击下图1处所示图标→2处出现红框内文字,3处出现Zotero快速格式化引文→点击快速格式化引文左边图标选择经典视图

3. 出现“添加/编辑引文”对话框→选择要引入的文献,点击OK

4. 下图1处出现上角标→光标置于参考文献3处→点击2处→3处引入参考文献成功


5. 其他文献可依次插入。Zotero有个特别强大的功能,如果中间一部分引文被删除,点击工具栏的Refresh,上角标以及参考文献会自动更新。
步骤:
点击左上角Add/Edit
Citation工具→选择右下角管理样式→在 Zotero Style Repository对话框寻找想要的引文格式


zotero只给了300m的空间,大概只能放80来篇文献的全文文件,如果文献较多就不能同步全文。注意:使用同步功能要先注册zotero账号。解决方法:使用坚果云:
坚果云官网:https://www.jianguoyun.com/
注意关闭手机验证,设置如图:

Zotero还有不少插件,比较有名的是zotfile,Zotero DOl Manager,它们可以自动下载pdf,或者获取论文的DOI。
具体使用方法可以网上搜索获取。
我发现了一个神奇的OCR工具:天若OCR,功能真的很好很强大。
免费版本可以识别图片文本,收费版本也不贵,59元一次性买个专业版,可以定义接口。
软件具有文本识别、翻译等功能,这些通用功能我就不展开说明了,我着重推荐两个功能:公式识别和表格识别。
公式识别
我之前推荐过公式的识别神器mathpix,真的很好用,但是免费的只有每个月50次,不够。
天若OCR可以设置mathpix的接口,mathpix接口一个月免费1000次识别,应该够了,注册的时候要绑定信用卡(注册过程要科学上网),识别效果:
原图片公式
识别后的公式,可以导出tex或者保存为word文件
一般的OCR软件识别文字都问题不大,但是表格识别却是个问题,解决这个问题,这里推荐下腾讯优图的接口,目前每天200次识别免费。在天若OCR里配置好表格识别的接口为腾讯优图后,识别效果如下:
原始表格图片

识别表格效果
识别后的表格,可以直接导入到word:

导入word效果
天若还可以对三线表添加网格后进行识别,非常方便。
论文最终展现出来的就是一个PDF格式的文档。
当然可以使用word,但光排版这件事情,就能耗费你一半的精力。
正确的答案是,使用latex,它是一个专业的排版工具,按照latex的语法进行写作,执行编译就能够得到PDF文件。它的语法包含了如何排版,虽然相比word上手要慢,但在排版这件事情上,入门级别的latex语法,你要达到精通word的水平。
latex如何使用呢?当然,要安装编译器,再安装编辑器,本地一通配置,偶尔会遇到些问题,凭着强大的谷歌搜索,倒也不是什么难事。配置本地环境,不如直接使用在线编辑器。
www.overleaf.com
注册即用,免去本地latex环境安装的痛苦。
多人合作,共同编辑。
富文本编辑模式,比写latex源码舒服些。
随时可以完成在线编译,查看PDF。

按照overleaf的开始流程,有选择模板的过程,模板怎么选,还是要看投稿的期刊或者会议的要求。以KDD为例,在它的KDD 2019 Call for Research Papers页面上,给出了模板格式,看看能不能在overleaf上找到,即使没有,一会提供下载,自己上传到overleaf。

走过这一步,已经可以编译出模板PDF了,可以照猫画虎地写起来了。
https://app.grammarly.com/
在这编辑文章的一句或一段话,语法出错了会有提示,低级的语法错误都能够避免。
语法纠错
除了语法纠错之外,还有同意替换功能,我的塑料英语能想到的词汇都太过常见,不够精准(逼格不足),选中词就可以同义替换了。
同意替换
建议在word软件中安装grammarly插件,直接可用在word中进行语法校对和纠正。
本人在写机器学习相关论文的时候,很多图片是用matplotlib和seaborn画的,但是,我还有一个神器,Scikit-plot,通过这个神器,画出了更加高大上的机器学习图,本文对Scikit-plot做下简单介绍。
安装说明
安装Scikit-plot非常简单,直接用命令:
pip install scikit-plot即可完成安装。
仓库地址:
https://github.com/reiinakano/scikit-plot
里面有使用说明和样例(py和ipynb格式)。
使用说明
简单举几个例子:
比如画出分类评级指标的ROC曲线的完整代码:
from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB X, y = load_digits(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) nb = GaussianNB() nb.fit(X_train, y_train) predicted_probas = nb.predict_proba(X_test) # The magic happens here import matplotlib.pyplot as plt import scikitplot as skplt skplt.metrics.plot_roc(y_test, predicted_probas) plt.show()效果如图(相当高大上!)

图:ROC曲线
P-R曲线就是精确率precision vs 召回率recall 曲线,以recall作为横坐标轴,precision作为纵坐标轴。首先解释一下精确率和召回率。
import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.datasets import load_digits as load_data import scikitplot as skplt # Load dataset X, y = load_data(return_X_y=True) # Create classifier instance then fit nb = GaussianNB() nb.fit(X,y) # Get predicted probabilities y_probas = nb.predict_proba(X) skplt.metrics.plot_precision_recall_curve(y, y_probas, cmap='nipy_spectral') plt.show()
图:P-R曲线
混淆矩阵是分类的重要评价标准,下面代码是用随机森林对鸢尾花数据集进行分类,分类结果画一个归一化的混淆矩阵。
from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_digits as load_data from sklearn.model_selection import cross_val_predict import matplotlib.pyplot as plt import scikitplot as skplt X, y = load_data(return_X_y=True) # Create an instance of the RandomForestClassifier classifier = RandomForestClassifier() # Perform predictions predictions = cross_val_predict(classifier, X, y) plot = skplt.metrics.plot_confusion_matrix(y, predictions, normalize=True) plt.show()
图:归一化混淆矩阵
其他图如学习曲线、特征重要性、聚类的肘点等等,都可以用几行代码搞定。

图:学习曲线、特征重要性
本章对Scikit-plot做下简单介绍,这是一个机器学习的画图神器,几行代码就能画出高大上的机器学习图,作者当年的博士论文也是靠这个画图的。仓库地址:
https://github.com/reiinakano/scikit-plot
里面有使用说明和样例。
[1]:知乎:九老师
[2]:https://www.zotero.org
[3]:https://github.com/reiinakano/scikit-plot
本文分享下我常用的论文工具,希望对读者写论文有所帮助,祝各位读者都能写出高大上的论文。

ctr问卷宝平台(PanelSmart)下载v4.3.0 安卓版
87.56MB |生活服务
在家画画app下载v9.4.6 安卓免费版
33.37MB |学习教育
实道数据官方软件下载v7.0.6 安卓版
86.38MB |资讯阅读
安阳政务app(改安阳市政府网)下载v1.7.7 安卓版
11.58MB |生活服务
云南农机补贴app下载v1.3.9 安卓手机版
28.1MB |生活服务
比心直播下载v9.34.0 安卓版
103.84MB |社交娱乐
平观新闻客户端下载v2.9.7 安卓版
88.25MB |资讯阅读
平顶山传媒客户端(改名平观新闻)下载v2.9.7 安卓官方版
88.25MB |资讯阅读
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-02-15
2022-02-14