发表时间:2022-03-25来源:网络
1、类只是一个模板(Template),编译后不占用内存空间,所以在定义类时不能对成员变量进行初始化,因为没有地方存储数据。只有在创建对象以后才会给成员变量分配内存,这个时候就可以赋值了。
2、两种创建对象的方式:一种是在栈上创建,形式和定义普通变量类似;另外一种是在堆上使用 new 关键字创建,必须要用一个指针指向它,读者要记得 delete 掉不再使用的对象。
3、在类体中和类体外定义成员函数是有区别的:在类体中定义的成员函数会自动成为内联函数,在类体外定义的不会。
4、内联函数一般不是我们所期望的,它会将函数调用处用函数体替代,所以我建议在类体内部对成员函数作声明,而在类体外部进行定义,这是一种良好的编程习惯,实际开发中大家也是这样做的。
5、虽然 C++ 支持将内联函数定义在类的外部,但我强烈建议将函数定义在类的内部,这样它会自动成为内联函数。
6、Java、C# 程序员注意,C++ 中的 public、private、protected 只能修饰类的成员,不能修饰类,C++中的类没有共有私有之分。
7、在类的内部(定义类的代码内部),无论成员被声明为 public、protected 还是 private,都是可以互相访问的,没有访问权限的限制。
在类的外部(定义类的代码之外),只能通过对象访问成员,并且通过对象只能访问 public 属性的成员,不能访问 private、protected 属性的成员。
8、成员变量大都以m_开头,这是约定成俗的写法,不是语法规定的内容。以m_开头既可以一眼看出这是成员变量,又可以和成员函数中的形参名字区分开。
9、根据C++软件设计规范,实际项目开发中的成员变量以及只在类内部使用的成员函数(只被成员函数调用的成员函数)都建议声明为 private,而只将允许通过对象调用的成员函数声明为 public。
10、在C++中,有一种特殊的成员函数,它的名字和类名相同,没有返回值,不需要用户显式调用(用户也不能调用),而是在创建对象时自动执行。这种特殊的成员函数就是构造函数(Constructor)。
11、一个类必须有构造函数,要么用户自己定义,要么编译器自动生成。一旦用户自己定义了构造函数,不管有几个,也不管形参如何,编译器都不再自动生成。默认生成的构造函数如下:Student(){}
12、使用构造函数初始化列表并没有效率上的优势,仅仅是书写方便,注意,成员变量的初始化顺序与初始化列表中列出的变量的顺序无关,它只与成员变量在类中声明的顺序有关。构造函数初始化列表还有一个很重要的作用,那就是初始化 const 成员变量。初始化 const 成员变量的唯一方法就是使用初始化列表。
13、析构函数(Destructor)也是一种特殊的成员函数,没有返回值,不需要程序员显式调用(程序员也没法显式调用),而是在销毁对象时自动执行。构造函数的名字和类名相同,而析构函数的名字是在类名前面加一个~符号。注意:析构函数没有参数,不能被重载,因此一个类只能有一个析构函数。如果用户没有定义,编译器会自动生成一个默认的析构函数。
14、C++ 中的 new 和 delete 分别用来分配和释放内存,它们与C语言中 malloc()、free() 最大的一个不同之处在于:用 new 分配内存时会调用构造函数,用 delete 释放内存时会调用析构函数。构造函数和析构函数对于类来说是不可或缺的,所以在C++中我们非常鼓励使用 new 和 delete。
15、this 是 C++ 中的一个关键字,也是一个 const 指针,它指向当前对象,通过它可以访问当前对象的所有成员。this 只能用在类的内部,通过 this 可以访问类的所有成员。this 虽然用在类的内部,但是只有在对象被创建以后才会给 this 赋值,并且这个赋值的过程是编译器自动完成的,不需要用户干预,用户也不能显式地给 this 赋值。只有当对象被创建后 this 才有意义,因此不能在 static 成员函数中使用。
16、this 实际上是成员函数的一个形参,在调用成员函数时将对象的地址作为实参传递给 this。不过 this 这个形参是隐式的,它并不出现在代码中,而是在编译阶段由编译器默默地将它添加到参数列表中。
this 作为隐式形参,本质上是成员函数的局部变量,所以只能用在成员函数的内部,并且只有在通过对象调用成员函数时才给 this 赋值。
17、在C++中,我们可以使用静态成员变量来实现多个对象共享数据的目标。静态成员变量是一种特殊的成员变量,它被关键字static修饰。static 成员变量必须在类声明的外部初始化。静态成员变量在初始化时不能再加 static。注意:static 成员变量的内存既不是在声明类时分配,也不是在创建对象时分配,而是在(类外)初始化时分配。反过来说,没有在类外初始化的 static 成员变量不能使用。static 成员变量既可以通过对象来访问,也可以通过类来访问。static 成员变量和普通 static 变量一样,都在内存分区中的全局数据区分配内存,到程序结束时才释放。这就意味着,static 成员变量不随对象的创建而分配内存,也不随对象的销毁而释放内存。而普通成员变量在对象创建时分配内存,在对象销毁时释放内存。 静态成员变量必须初始化,而且只能在类体外进行。例如:
int Student::m_total = 10;
18、静态成员函数与普通成员函数的根本区别在于:普通成员函数有 this 指针,可以访问类中的任意成员;而静态成员函数没有 this 指针,只能访问静态成员(包括静态成员变量和静态成员函数)。和静态成员变量类似,静态成员函数在声明时要加 static,在定义时不能加 static。
19、函数开头的 const 用来修饰函数的返回值,表示返回值是 const 类型,也就是不能被修改,例如const char * getname()。
函数头部的结尾加上 const 表示常成员函数,这种函数只能读取成员变量的值,而不能修改成员变量的值,例如char * getname() const。
20、一旦将对象定义为常对象之后,不管是哪种形式,该对象就只能访问被 const 修饰的成员了(包括 const 成员变量和 const 成员函数),因为非 const 成员可能会修改对象的数据(编译器也会这样假设),C++禁止这样做。
21、在 C++ 中,一个类中可以有 public、protected、private 三种属性的成员,通过对象可以访问 public 成员,只有本类中的函数可以访问本类的 private 成员。现在,我们来介绍一种例外情况——友元(friend)。借助友元(friend),可以使得其他类中的成员函数以及全局范围内的函数访问当前类的 private 成员。
不仅可以将一个函数声明为一个类的“朋友”,还可以将整个类声明为另一个类的“朋友”,这就是友元类。友元类中的所有成员函数都是另外一个类的友元函数。
例如将类 B 声明为类 A 的友元类,那么类 B 中的所有成员函数都是类 A 的友元函数,可以访问类 A 的所有成员,包括 public、protected、private 属性的。
22、在C++中,struct 类似于 class,既可以包含成员变量,又可以包含成员函数。
C++中的 struct 和 class 基本是通用的,唯有几个细节不同:
使用 class 时,类中的成员默认都是 private 属性的;而使用 struct 时,结构体中的成员默认都是 public 属性的。
class 继承默认是 private 继承,而 struct 继承默认是 public 继承。
class 可以使用模板,而 struct 不能。
23、与C风格的字符串不同,string 的结尾没有结束标志’\0’。string 类为我们提供了一个转换函数 c_str(),该函数能够将 string 字符串转换为C风格的字符串,并返回该字符串的 const 指针(const char*)。
24、对象所占用的存储空间的大小等于各成员变量所占用的存储空间的大小之和(如果不考虑成员变量对齐问题的话)。
25、C++中explicit关键字的使用。
在C++中,我们有时可以将构造函数用作自动类型转换函数。但这种自动特性并非总是合乎要求的,有时会导致意外的类型转换,因此,C++新增了关键字explicit,用于关闭这种自动特性。即被explicit关键字修饰的类构造函数,不能进行自动地隐式类型转换,只能显式地进行类型转换。
注意:只有一个参数的构造函数,或者构造函数有n个参数,但有n-1个参数提供了默认值,这样的情况才能进行类型转换。
1、 C++ 中,我们有了一种比指针更加便捷的传递聚合类型数据的方式,那就是引用(Reference)。
在 C/C++ 中,我们将 char、int、float 等由语言本身支持的类型称为基本类型,将数组、结构体、类(对象)等由基本类型组合而成的类型称为聚合类型(在讲解结构体时也曾使用复杂类型、构造类型这两种说法)。
2、引用(Reference)是 C++ 相对于C语言的又一个扩充。引用可以看做是数据的一个别名,通过这个别名和原来的名字都能够找到这份数据。引用的定义方式类似于指针,只是用&取代了*,语法格式为:
type &name = data;
type 是被引用的数据的类型,name 是引用的名称,data 是被引用的数据。引用必须在定义的同时初始化,并且以后也要从一而终,不能再引用其它数据,这有点类似于常量(const 变量)。
3、C++引用作为函数参数
在定义或声明函数时,我们可以将函数的形参指定为引用的形式,这样在调用函数时就会将实参和形参绑定在一起,让它们都指代同一份数据。如此一来,如果在函数体中修改了形参的数据,那么实参的数据也会被修改,从而拥有“在函数内部影响函数外部数据”的效果。
说明:在C语言中,结构体不能包含函数。在面向对象的程序设计中,对象具有状态(属性)和行为,状态保存在成员变量中,行为通过成员方法(函数)来实现。C语言中的结构体只能描述一个对象的状态,不能描述一个对象的行为。在C++中,考虑到C语言到C++语言过渡的连续性,对结构体进行了扩展,C++的结构体可以包含函数,这样,C++的结构体也具有类的功能,与class不同的是,结构体包含的函数默认为public,而不是private。
1、被继承的类称为父类或基类,继承的类称为子类或派生类。“子类”和“父类”通常放在一起称呼,“基类”和“派生类”通常放在一起称呼。
2、C++继承的一般语法为:
class 派生类名:[继承方式] 基类名{
派生类新增加的成员
};
继承方式限定了基类成员在派生类中的访问权限,包括 public(公有的)、private(私有的)和 protected(受保护的)。此项是可选项,如果不写,默认为 private(成员变量和成员函数默认也是 private)。
3、public、protected、private 指定继承方式
不同的继承方式会影响基类成员在派生类中的访问权限。
1) public继承方式
基类中所有 public 成员在派生类中为 public 属性;
基类中所有 protected 成员在派生类中为 protected 属性;
基类中所有 private 成员在派生类中不能使用。
2) protected继承方式
基类中的所有 public 成员在派生类中为 protected 属性;
基类中的所有 protected 成员在派生类中为 protected 属性;
基类中的所有 private 成员在派生类中不能使用。
3) private继承方式
基类中的所有 public 成员在派生类中均为 private 属性;
基类中的所有 protected 成员在派生类中均为 private 属性;
基类中的所有 private 成员在派生类中不能使用。
通过上面的分析可以发现:
1) 基类成员在派生类中的访问权限不得高于继承方式中指定的权限。
2) 不管继承方式如何,基类中的 private 成员在派生类中始终不能使用(不能在派生类的成员函数中访问或调用)。
3) 如果希望基类的成员能够被派生类继承并且毫无障碍地使用,那么这些成员只能声明为 public 或 protected;只有那些不希望在派生类中使用的成员才声明为 private。
4) 如果希望基类的成员既不向外暴露(不能通过对象访问),还能在派生类中使用,那么只能声明为 protected。
4、实际上,基类的 private 成员是能够被继承的,并且(成员变量)会占用派生类对象的内存,它只是在派生类中不可见,导致无法使用罢了。由于 private 和 protected 继承方式会改变基类成员在派生类中的访问权限,导致继承关系复杂,所以实际开发中我们一般使用 public。
5、在派生类中访问基类 private 成员的唯一方法就是借助基类的非 private 成员函数,如果基类没有非 private 成员函数,那么该成员在派生类中将无法访问。
6、使用 using 关键字可以改变基类成员在派生类中的访问权限,例如将 public 改为 private、将 protected 改为 public。
注意:using 只能改变基类中 public 和 protected 成员的访问权限,不能改变 private 成员的访问权限,因为基类中 private 成员在派生类中是不可见的,根本不能使用。
public:
using People::m_name; //将protected改为public
private:
using People::show; //将public改为private
7、如果派生类中的成员(包括成员变量和成员函数)和基类中的成员重名,那么就会遮蔽从基类继承过来的成员。所谓遮蔽,就是在派生类中使用该成员(包括在定义派生类时使用,也包括通过派生类对象访问该成员)时,实际上使用的是派生类新增的成员,而不是从基类继承来的。基类成员函数和派生类成员函数不构成重载。
8、类的构造函数不能被继承。大部分基类都有 private 属性的成员变量,它们在派生类中无法访问,更不能使用派生类的构造函数来初始化。这种矛盾在C++继承中是普遍存在的,解决这个问题的思路是:在派生类的构造函数中调用基类的构造函数。构造函数的调用顺序是按照继承的层次自顶向下、从基类再到派生类的。还有一点要注意,派生类构造函数中只能调用直接基类的构造函数,不能调用间接基类的。
9、和构造函数类似,析构函数也不能被继承。与构造函数不同的是,在派生类的析构函数中不用显式地调用基类的析构函数,因为每个类只有一个析构函数,编译器知道如何选择,无需程序员干涉。
另外析构函数的执行顺序和构造函数的执行顺序也刚好相反:
创建派生类对象时,构造函数的执行顺序和继承顺序相同,即先执行基类构造函数,再执行派生类构造函数。
而销毁派生类对象时,析构函数的执行顺序和继承顺序相反,即先执行派生类析构函数,再执行基类析构函数。
10、派生类都只有一个基类,称为单继承(Single Inheritance)。除此之外,C++也支持多继承(Multiple Inheritance),即一个派生类可以有两个或多个基类。
多继承容易让代码逻辑复杂、思路混乱,一直备受争议,中小型项目中较少使用,后来的 Java、C#、PHP 等干脆取消了多继承。
多继承的语法也很简单,将多个基类用逗号隔开即可。例如已声明了类A、类B和类C,那么可以这样来声明派生类D:
class D: public A, private B, protected C{
//类D新增加的成员
}
多继承形式下的构造函数和单继承形式基本相同,只是要在派生类的构造函数中调用多个基类的构造函数。以上面的 A、B、C、D 类为例,D 类构造函数的写法为:
D(形参列表): A(实参列表), B(实参列表), C(实参列表){
//其他操作
}
基类构造函数的调用顺序和和它们在派生类构造函数中出现的顺序无关,而是和声明派生类时基类出现的顺序相同。仍然以上面的 A、B、C、D 类为例,即使将 D 类构造函数写作下面的形式:
D(形参列表): B(实参列表), C(实参列表), A(实参列表){
//其他操作
}
那么也是先调用 A 类的构造函数,再调用 B 类构造函数,最后调用 C 类构造函数。
11、虚继承(Virtual Inheritance)
为了解决多继承时的命名冲突和冗余数据问题,C++ 提出了虚继承,使得在派生类中只保留一份间接基类的成员。
虚继承的目的是让某个类做出声明,承诺愿意共享它的基类。其中,这个被共享的基类就称为虚基类(Virtual Base Class),本例中的 A 就是一个虚基类。在这种机制下,不论虚基类在继承体系中出现了多少次,在派生类中都只包含一份虚基类的成员。
现在让我们重新梳理一下本例的继承关系,如下图所示:
图2:使用虚继承解决菱形继承中的命名冲突问题
12、可以看到,使用多继承经常会出现二义性问题,必须十分小心。上面的例子是简单的,如果继承的层次再多一些,关系更复杂一些,程序员就很容易陷人迷魂阵,程序的编写、调试和维护工作都会变得更加困难,因此我不提倡在程序中使用多继承,只有在比较简单和不易出现二义性的情况或实在必要时才使用多继承,能用单一继承解决的问题就不要使用多继承。也正是由于这个原因,C++ 之后的很多面向对象的编程语言,例如 Java、C#、PHP 等,都不支持多继承。
13、C++ 干脆规定必须由最终的派生类 D 来初始化虚基类 A,直接派生类 B 和 C 对 A 的构造函数的调用是无效的。
虚继承时构造函数的执行顺序与普通继承时不同:在最终派生类的构造函数调用列表中,不管各个构造函数出现的顺序如何,编译器总是先调用虚基类的构造函数,再按照出现的顺序调用其他的构造函数;而对于普通继承,就是按照构造函数出现的顺序依次调用的。
修改本例中第 50 行代码,改变构造函数出现的顺序:
D:😄(int a, int b, int c, int d): B(90, b), C(100, c), A(a), m_d(d){ }
虽然我们将 A() 放在了最后,但是编译器仍然会先调用 A(),然后再调用 B()、C(),因为 A() 是虚基类的构造函数,比其他构造函数优先级高。如果没有使用虚继承的话,那么编译器将按照出现的顺序依次调用 B()、C()、A()。
14、类其实也是一种数据类型,也可以发生数据类型转换,不过这种转换只有在基类和派生类之间才有意义,并且只能将派生类赋值给基类,包括将派生类对象赋值给基类对象、将派生类指针赋值给基类指针、将派生类引用赋值给基类引用,这在 C++ 中称为向上转型(Upcasting)。相应地,将基类赋值给派生类称为向下转型(Downcasting)。
向上转型非常安全,可以由编译器自动完成;向下转型有风险,需要程序员手动干预。本节只介绍向上转型,向下转型将在后续章节介绍。
向上转型和向下转型是面向对象编程的一种通用概念,它们也存在于 Java、C# 等编程语言中。
15、赋值的本质是将现有的数据写入已分配好的内存中,对象的内存只包含了成员变量,所以对象之间的赋值是成员变量的赋值,成员函数不存在赋值问题。运行结果也有力地证明了这一点,虽然有a=b;这样的赋值过程,但是 a.display() 始终调用的都是 A 类的 display() 函数。换句话说,对象之间的赋值不会影响成员函数,也不会影响 this 指针。
将派生类对象赋值给基类对象时,会舍弃派生类新增的成员,也就是“大材小用”,如下图所示:
这种转换关系是不可逆的,只能用派生类对象给基类对象赋值,而不能用基类对象给派生类对象赋值。理由很简单,基类不包含派生类的成员变量,无法对派生类的成员变量赋值。同理,同一基类的不同派生类对象之间也不能赋值。
16、将派生类指针赋值给基类指针
1) 通过基类指针访问派生类的成员
编译器通过指针来访问成员变量,指针指向哪个对象就使用哪个对象的数据;编译器通过指针的类型来访问成员函数,指针属于哪个类的类型就使用哪个类的函数。
17、将派生类引用赋值给基类引用。引用和指针的表现之所以如此类似,是因为引用和指针并没有本质上的区别,引用仅仅是对指针进行了简单封装。
18、最后需要注意的是,向上转型后通过基类的对象、指针、引用只能访问从基类继承过去的成员(包括成员变量和成员函数),不能访问派生类新增的成员。
1、“多态(polymorphism)”指的是同一名字的事物可以完成不同的功能。多态可以分为编译时的多态和运行时的多态。前者主要是指函数的重载(包括运算符的重载)、对重载函数的调用,在编译时就能根据实参确定应该调用哪个函数,因此叫编译时的多态;而后者则和继承、虚函数等概念有关。
2、有了虚函数,基类指针指向基类对象时就使用基类的成员(包括成员函数和成员变量),指向派生类对象时就使用派生类的成员。换句话说,基类指针可以按照基类的方式来做事,也可以按照派生类的方式来做事,它有多种形态,或者说有多种表现方式,我们将这种现象称为多态(Polymorphism)。
C++提供多态的目的是:可以通过基类指针对所有派生类(包括直接派生和间接派生)的成员变量和成员函数进行“全方位”的访问,尤其是成员函数。如果没有多态,我们只能访问成员变量。
前面我们说过,通过指针调用普通的成员函数时会根据指针的类型(通过哪个类定义的指针)来判断调用哪个类的成员函数,但是通过本节的分析可以发现,这种说法并不适用于虚函数,虚函数是根据指针的指向来调用的,指针指向哪个类的对象就调用哪个类的虚函数。
3、C++ 虚函数对于多态具有决定性的作用,有虚函数才能构成多态。
虚函数的注意事项:
1) 只需要在虚函数的声明处加上 virtual 关键字,函数定义处可以加也可以不加。
2) 为了方便,你可以只将基类中的函数声明为虚函数,这样所有派生类中具有遮蔽关系的同名函数都将自动成为虚函数。关于名字遮蔽已在《C++继承时的名字遮蔽》一节中进行了讲解。
3) 当在基类中定义了虚函数时,如果派生类没有定义新的函数来遮蔽此函数,那么将使用基类的虚函数。
4) 只有派生类的虚函数覆盖基类的虚函数(函数原型相同)才能构成多态(通过基类指针访问派生类函数)。例如基类虚函数的原型为virtual void func();,派生类虚函数的原型为virtual void func(int);,那么当基类指针 p 指向派生类对象时,语句p -> func(100);将会出错,而语句p -> func();将调用基类的函数。
5) 构造函数不能是虚函数。对于基类的构造函数,它仅仅是在派生类构造函数中被调用,这种机制不同于继承。也就是说,派生类不继承基类的构造函数,将构造函数声明为虚函数没有什么意义。
6) 析构函数可以声明为虚函数,而且有时候必须要声明为虚函数,这点我们将在下节中讲解。
4、构成多态的条件:
必须存在继承关系;
继承关系中必须有同名的虚函数,并且它们是覆盖关系(函数原型相同)。
存在基类的指针,通过该指针调用虚函数。
5、什么时候声明虚函数
首先看成员函数所在的类是否会作为基类。然后看成员函数在类的继承后有无可能被更改功能,如果希望更改其功能的,一般应该将它声明为虚函数。如果成员函数在类被继承后功能不需修改,或派生类用不到该函数,则不要把它声明为虚函数。
6、在C++中,可以将虚函数声明为纯虚函数,语法格式为:
virtual 返回值类型 函数名 (函数参数) = 0;
包含纯虚函数的类称为抽象类(Abstract Class)。之所以说它抽象,是因为它无法实例化,也就是无法创建对象。
抽象类通常是作为基类,让派生类去实现纯虚函数。派生类必须实现纯虚函数才能被实例化。
7、在实际开发中,你可以定义一个抽象基类,只完成部分功能,未完成的功能交给派生类去实现(谁派生谁实现)。这部分未完成的功能,往往是基类不需要的,或者在基类中无法实现的。虽然抽象基类没有完成,但是却强制要求派生类完成,这就是抽象基类的“霸王条款”。
8、关于纯虚函数的几点说明
9、typeid 运算符用来获取一个表达式的类型信息。类型信息对于编程语言非常重要,它描述了数据的各种属性:
对于基本类型(int、float 等C++内置类型)的数据,类型信息所包含的内容比较简单,主要是指数据的类型。
对于类类型的数据(也就是对象),类型信息是指对象所属的类、所包含的成员、所在的继承关系等。
类型信息是创建数据的模板,数据占用多大内存、能进行什么样的操作、该如何操作等,这些都由它的类型信息决定。
C++ 标准规定,type_info 类至少要有如下所示的 4 个 public 属性的成员函数,其他的扩展函数编译器开发者可以自由发挥,不做限制。
1) 原型:const char* name() const;
返回一个能表示类型名称的字符串。但是C++标准并没有规定这个字符串是什么形式的,例如对于上面的objInfo.name()语句,VC/VS 下返回“class Base”,但 GCC 下返回“4Base”。
2) 原型:bool before (const type_info& rhs) const;
判断一个类型是否位于另一个类型的前面,rhs 参数是一个 type_info 对象的引用。但是C++标准并没有规定类型的排列顺序,不同的编译器有不同的排列规则,程序员也可以自定义。要特别注意的是,这个排列顺序和继承顺序没有关系,基类并不一定位于派生类的前面。
3) 原型:bool operator== (const type_info& rhs) const;
重载运算符“==”,判断两个类型是否相同,rhs 参数是一个 type_info 对象的引用。
4) 原型:bool operator!= (const type_info& rhs) const;
重载运算符“!=”,判断两个类型是否不同,rhs 参数是一个 type_info 对象的引用。
可以发现,不像 Java、C# 等动态性较强的语言,C++ 能获取到的类型信息非常有限,也没有统一的标准,如同“鸡肋”一般,大部分情况下我们只是使用重载过的“==”运算符来判断两个类型是否相同。
1、运算符重载其实就是定义一个函数,在函数体内实现想要的功能,当用到该运算符时,编译器会自动调用这个函数。也就是说,运算符重载是通过函数实现的,它本质上是函数重载。
运算符重载的格式为:
返回值类型 operator 运算符名称 (形参表列){
//TODO:
}
operator是关键字,专门用于定义重载运算符的函数。我们可以将operator 运算符名称这一部分看做函数名,对于上面的代码,函数名就是operator+。
运算符重载函数除了函数名有特定的格式,其它地方和普通函数并没有区别。
运算符重载函数不仅可以作为类的成员函数,还可以作为全局函数。
2、在 C++ 中进行运算符重载时,有以下问题需要注意:
重载后运算符的含义应该符合原有用法习惯。例如重载+运算符,完成的功能就应该类似于做加法,在重载的+运算符中做减法是不合适的。此外,重载应尽量保留运算符原有的特性。
C++ 规定,运算符重载不改变运算符的优先级。
以下运算符不能被重载:.、.*、::、? :、sizeof。
重载运算符()、[]、->、或者赋值运算符=时,只能将它们重载为成员函数,不能重载为全局函数。
运算符重载的实质是将运算符重载为一个函数,使用运算符的表达式就被解释为对重载函数的调用。
运算符可以重载为全局函数。此时函数的参数个数就是运算符的操作数个数,运算符的操作数就成为函数的实参。
运算符也可以重载为成员函数。此时函数的参数个数就是运算符的操作数个数减一,运算符的操作数有一个成为函数作用的对象,其余的成为函数的实参。
必要时需要重载赋值运算符=,以避免两个对象内部的指针指向同一片存储空间。
运算符可以重载为全局函数,然后声明为类的友元。
1、泛型程序设计(generic programming)是一种算法在实现时不指定具体要操作的数据的类型的程序设计方法。所谓“泛型”,指的是算法只要实现一遍,就能适用于多种数据类型。泛型程序设计方法的优势在于能够减少重复代码的编写。
泛型程序设计的概念最早出现于 1983 年的 Ada 语言,其最成功的应用就是 C++ 的标准模板库(STL)。也可以说,泛型程序设计就是大量编写模板、使用模板的程序设计。泛型程序设计在 C++ 中的重要性和带来的好处不亚于面向对象的特性。
在 C++ 中,模板分为函数模板和类模板两种。熟练的 C++ 程序员,在编写函数时都会考虑能否将其写成函数模板,编写类时都会考虑能否将其写成类模板,以便实现重用。
2、我们知道,数据的值可以通过函数参数传递,在函数定义时数据的值是未知的,只有等到函数调用时接收了实参才能确定其值。这就是值的参数化。
在C++中,数据的类型也可以通过参数来传递,在函数定义时可以不指明具体的数据类型,当发生函数调用时,编译器可以根据传入的实参自动推断数据类型。这就是类型的参数化。
值(Value)和类型(Type)是数据的两个主要特征,它们在C++中都可以被参数化。
所谓函数模板,实际上是建立一个通用函数,它所用到的数据的类型(包括返回值类型、形参类型、局部变量类型)可以不具体指定,而是用一个虚拟的类型来代替(实际上是用一个标识符来占位),等发生函数调用时再根据传入的实参来逆推出真正的类型。这个通用函数就称为函数模板(Function Template)。
在函数模板中,数据的值和类型都被参数化了,发生函数调用时编译器会根据传入的实参来推演形参的值和类型。换个角度说,函数模板除了支持值的参数化,还支持类型的参数化。
3、定义模板函数的语法:
template 返回值类型 函数名(形参列表){
//在函数体中可以使用类型参数
}
类型参数可以有多个,它们之间以逗号,分隔。类型参数列表以< >包围,形式参数列表以( )包围。
typename关键字也可以使用class关键字替代,它们没有任何区别。C++ 早期对模板的支持并不严谨,没有引入新的关键字,而是用 class 来指明类型参数,但是 class 关键字本来已经用在类的定义中了,这样做显得不太友好,所以后来 C++ 又引入了一个新的关键字 typename,专门用来定义类型参数。不过至今仍然有很多代码在使用 class 关键字,包括 C++ 标准库、一些开源程序等。
4、C++ 除了支持函数模板,还支持类模板(Class Template)。函数模板中定义的类型参数可以用在函数声明和函数定义中,类模板中定义的类型参数可以用在类声明和类实现中。类模板的目的同样是将数据的类型参数化。
声明类模板的语法为:
template class 类名{
//TODO:
};
类模板和函数模板都是以 template 开头(当然也可以使用 class,目前来讲它们没有任何区别),后跟类型参数;类型参数不能为空,多个类型参数用逗号隔开。
一但声明了类模板,就可以将类型参数用于类的成员函数和成员变量了。换句话说,原来使用 int、float、char 等内置类型的地方,都可以用类型参数来代替。
在类外定义成员函数时仍然需要带上模板头,格式为:
template
返回值类型 类名::函数名(形参列表){
//TODO:
}
第一行是模板头,第二行是函数头。
5、使用类模板创建对象时,需要指明具体的数据类型。请看下面的代码:
Point p1(10, 20);
Point p2(10, 15.5);
Point p3(12.4, “东经180度”);
与函数模板不同的是,类模板在实例化时必须显式地指明数据类型,编译器不能根据给定的数据推演出数据类型。
6、根据“在定义变量时是否需要显式地指明数据类型”可以分为强类型语言和弱类型语言。
1) 强类型语言
强类型语言在定义变量时需要显式地指明数据类型,并且一旦为变量指明了某种数据类型,该变量以后就不能赋予其他类型的数据了,除非经过强制类型转换或隐式类型转换。典型的强类型语言有 C/C++、Java、C# 等。
2) 弱类型语言
弱类型语言在定义变量时不需要显式地指明数据类型,编译器(解释器)会根据赋给变量的数据自动推导出类型,并且可以赋给变量不同类型的数据。典型的弱类型语言有 JavaScript、Python、PHP、Ruby、Shell、Perl 等。
对于强类型的语言,变量的类型从始至终都是确定的、不变的,编译器在编译期间就能检测某个变量的操作是否正确,这样最终生成的程序中就不用再维护一套类型信息了,从而减少了内存的使用,加快了程序的运行。
弱类型语言往往是一边执行一边编译,这样可以根据上下文(可以理解为当前的执行环境)推导出很多有用信息,让编译更加高效。我们将这种一边执行一边编译的语言称为解释型语言,而将传统的先编译后执行的语言称为编译型语言。
强类型语言较为严谨,在编译时就能发现很多错误,适合开发大型的、系统级的、工业级的项目;而弱类型语言较为灵活,编码效率高,部署容易,学习成本低,在 Web 开发中大显身手。另外,强类型语言的 IDE 一般都比较强大,代码感知能力好,提示信息丰富;而弱类型语言一般都是在编辑器中直接书写代码。
模板所支持的类型是宽泛的,没有限制的,我们可以使用任意类型来替换,这种编程方式称为泛型编程(Generic Programming)。相应地,可以将参数 T 看做是一个泛型,而将 int、float、string 等看做是一种具体的类型。除了 C++,Java、C#、Pascal(Delphi)也都支持泛型编程。
C++ 模板也是被迫推出的,最直接的动力来源于对数据结构的封装。数据结构关注的是数据的存储,以及存储后如何进行增加、删除、修改和查询操作,它是一门基础性的学科,在实际开发中有着非常广泛的应用。C++ 开发者们希望为线性表、链表、图、树等常见的数据结构都定义一个类,并把它们加入到标准库中,这样以后程序员就不用重复造轮子了,直接拿来使用即可。
但是这个时候遇到了一个无法解决的问题,就是数据结构中每份数据的类型无法提前预测。以链表为例,它的每个节点可以用来存储小数、整数、字符串等,也可以用来存储一名学生、教师、司机等,还可以直接存储二进制数据,这些都是可以的,没有任何限制。而 C++ 又是强类型的,数据的种类受到了严格的限制,这种矛盾是无法调和的。
要想解决这个问题,C++ 必须推陈出新,跳出现有规则的限制,开发新的技术,于是模板就诞生了。模板虽然不是 C++ 的首创,但是却在 C++ 中大放异彩,后来也被 Java、C# 等其他强类型语言采用。
C++ 模板有着复杂的语法,可不仅仅是前面两节讲到的那么简单,它的话题可以写一本书。C++ 模板也非常重要,整个标准库几乎都是使用模板来开发的,STL 更是经典之作。
STL(Standard Template Library,标准模板库)就是 C++ 对数据结构进行封装后的称呼。
1、程序的错误大致可以分为三种,分别是语法错误、逻辑错误和运行时错误:
1) 语法错误在编译和链接阶段就能发现,只有 100% 符合语法规则的代码才能生成可执行程序。语法错误是最容易发现、最容易定位、最容易排除的错误,程序员最不需要担心的就是这种错误。
2) 逻辑错误是说我们编写的代码思路有问题,不能够达到最终的目标,这种错误可以通过调试来解决。
3) 运行时错误是指程序在运行期间发生的错误,例如除数为 0、内存分配失败、数组越界、文件不存在等。C++ 异常(Exception)机制就是为解决运行时错误而引入的。
运行时错误如果放任不管,系统就会执行默认的操作,终止程序运行,也就是我们常说的程序崩溃(Crash)。C++ 提供了异常(Exception)机制,让我们能够捕获运行时错误,给程序一次“起死回生”的机会,或者至少告诉用户发生了什么再终止程序。
2、捕获异常的语法为:
try{
// 可能抛出异常的语句
}catch(exceptionType variable){
// 处理异常的语句
}
try和catch都是 C++ 中的关键字,后跟语句块,不能省略{ }。try 中包含可能会抛出异常的语句,一旦有异常抛出就会被后面的 catch 捕获。从 try 的意思可以看出,它只是“检测”语句块有没有异常,如果没有发生异常,它就“检测”不到。catch 是“抓住”的意思,用来捕获并处理 try 检测到的异常;如果 try 语句块没有检测到异常(没有异常抛出),那么就不会执行 catch 中的语句。
这就好比,catch 告诉 try:你去检测一下程序有没有错误,有错误的话就告诉我,我来处理,没有的话就不要理我!
测到异常后程序的执行流会发生跳转,从异常点跳转到 catch 所在的位置,位于异常点之后的、并且在当前 try 块内的语句就都不会再执行了;即使 catch 语句成功地处理了错误,程序的执行流也不会再回退到异常点,所以这些语句永远都没有执行的机会了。
3、我们可以将 catch 看做一个没有返回值的函数,当异常发生后 catch 会被调用,并且会接收实参(异常数据)。
总起来说,catch 和真正的函数调用相比,多了一个「在运行阶段将实参和形参匹配」的过程。
另外需要注意的是,如果不希望 catch 处理异常数据,也可以将 variable 省略掉,也即写作:
try{
// 可能抛出异常的语句
}catch(exceptionType){
// 处理异常的语句
}
这样只会将异常类型和 catch 所能处理的类型进行匹配,不会传递异常数据了。
4、异常必须显式地抛出,才能被检测和捕获到;如果没有显式的抛出,即使有异常也检测不到。
在 C++ 中,我们使用 throw 关键字来显式地抛出异常,它的用法为:
throw exceptionData;
5、throw 用作异常规范
throw 关键字除了可以用在函数体中抛出异常,还可以用在函数头和函数体之间,指明当前函数能够抛出的异常类型,这称为异常规范(Exception specification),有些教程也称为异常指示符或异常列表。请看下面的例子:
double func (char param) throw (int);
这条语句声明了一个名为 func 的函数,它的返回值类型为 double,有一个 char 类型的参数,并且只能抛出 int 类型的异常。如果抛出其他类型的异常,try 将无法捕获,只能终止程序。
6、请抛弃异常规范,不要再使用它
异常规范的初衷是好的,它希望让程序员看到函数的定义或声明后,立马就知道该函数会抛出什么类型的异常,这样程序员就可以使用 try-catch 来捕获了。如果没有异常规范,程序员必须阅读函数源码才能知道函数会抛出什么异常。
不过这有时候也不容易做到。例如,func_outer() 函数可能不会引发异常,但它调用了另外一个函数 func_inner(),这个函数可能会引发异常。再如,您编写的函数调用了老式的库函数,此时不会引发异常,但是库更新以后这个函数却引发了异常。总之,异常规范的初衷实现起来有点困难,所以大家达成的一致意见是,最好不要使用异常规范。
异常规范是 C++98 新增的一项功能,但是后来的 C++11 已经将它抛弃了,不再建议使用。
另外,各个编译器对异常规范的支持也不一样。
7、C++ exception类:C++标准异常的基类
C++语言本身或者标准库抛出的异常都是 exception 的子类,称为标准异常(Standard Exception)。你可以通过下面的语句来捕获所有的标准异常:
try{
//可能抛出异常的语句
}catch(exception &e){
//处理异常的语句
}
之所以使用引用,是为了提高效率。如果不使用引用,就要经历一次对象拷贝(要调用拷贝构造函数)的过程。
图:exception 类的继承层次以及它们所对应的头文件
exception 类的直接派生类:
1、当以拷贝的方式初始化一个对象时,会调用一个特殊的构造函数,就是拷贝构造函数(Copy Constructor)。
#include #include using namespace std; class Student{ public: Student(string name = "", int age = 0, float score = 0.0f); //普通构造函数 Student(const Student &stu); //拷贝构造函数(声明) public: void display(); private: string m_name; int m_age; float m_score; }; Student::Student(string name, int age, float score): m_name(name), m_age(age), m_score(score){ } //拷贝构造函数(定义) Student::Student(const Student &stu){ this->m_name = stu.m_name; this->m_age = stu.m_age; this->m_score = stu.m_score; cout double --> Complex)。 Complex c1 = 100; //int --> double --> Complex cout string str1 = "237"; string str2 = "aaa1234"; if(str2.find(str1) == string::npos){ cout1, 2, 3}// v5是一个含有3个int类型的vector,其中每个元素被赋予相应的初始值 vector v5 = {1, 2, 3}// 与上面语句等价 //尾部插入元素 push_back() vec.push_back(1); //尾部删除元素 pop_back() vec.pop_back(); //使用下标访问元素[] cout //若不存在,则返回迭代器的尾指针,即 mymap.end(),即 -1 cout 75,23,65,42,13}; list mylist (myints, myints+5); //对 list 进行顺序遍历 for (list::iterator it = mylist.begin(); it != mylist.end(); ++it) std::cout上一篇:C++基础入门(一)
苏宁微店卖家版app(苏宁推客)下载v9.8.40 安卓最新版
57.19MB |生活服务
机友邦工程机械网官方版app下载v4.0.4 安卓版
88.56MB |系统工具
苏宁微店客户端(改名苏宁推客)下载v9.8.40 安卓版
57.19MB |生活服务
优腿商家端app下载v1.23.5 安卓版
34.13MB |系统工具
龙湖物业app下载v1.20.0 安卓版
84.54MB |生活服务
moon月球手机版下载v2.6.5 安卓版
51.55MB |生活服务
邻里掌柜app官方版下载v8.12.3 安卓版
151.25MB |生活服务
药采采app官方版下载v2.6.3 安卓版
31.88MB |生活服务
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-03-26
2022-02-15
2022-02-14